home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-15 | 5.5 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 06 15 00 00 d5 00 00 00 |TUTOR 06|........|
|00000010| 43 68 61 70 74 65 72 20 | 35 20 20 45 78 70 6f 6e |Chapter |5 Expon|
|00000020| 65 6e 74 69 61 6c 20 61 | 6e 64 20 4c 6f 67 61 72 |ential a|nd Logar|
|00000030| 69 74 68 6d 69 63 20 46 | 75 6e 63 74 69 6f 6e 73 |ithmic F|unctions|
|00000040| 0d 0b 00 16 35 2d 69 6e | 64 65 78 16 14 63 68 61 |....5-in|dex..cha|
|00000050| 70 36 2e 68 69 14 30 14 | 31 14 37 38 14 31 38 14 |p6.hi.0.|1.78.18.|
|00000060| 0d 0a 00 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00000070| 20 20 20 20 20 20 20 20 | 10 35 2d 70 72 65 0e 70 | |.5-pre.p|
|00000080| 72 65 69 6e 74 72 6f 2d | 35 0e 43 68 61 70 74 65 |reintro-|5.Chapte|
|00000090| 72 20 57 61 72 6d 20 75 | 70 0f 0d 0a 00 0d 0b 00 |r Warm u|p.......|
|000000a0| 20 20 20 20 20 0e 73 36 | 2d 31 0e 53 65 63 74 69 | .s6|-1.Secti|
|000000b0| 6f 6e 20 35 2e 31 0f 20 | 20 45 78 70 6f 6e 65 6e |on 5.1. | Exponen|
|000000c0| 74 69 61 6c 20 46 75 6e | 63 74 69 6f 6e 73 20 61 |tial Fun|ctions a|
|000000d0| 6e 64 20 54 68 65 69 72 | 20 47 72 61 70 68 73 0d |nd Their| Graphs.|
|000000e0| 0a 00 0d 0b 00 20 20 20 | 20 20 10 35 2d 32 2d 31 |..... | .5-2-1|
|000000f0| 0e 73 35 2d 32 0e 53 65 | 63 74 69 6f 6e 20 35 2e |.s5-2.Se|ction 5.|
|00000100| 32 0f 20 20 4c 6f 67 61 | 72 69 74 68 6d 69 63 20 |2. Loga|rithmic |
|00000110| 46 75 6e 63 74 69 6f 6e | 73 20 61 6e 64 20 54 68 |Function|s and Th|
|00000120| 65 69 72 20 47 72 61 70 | 68 73 0d 0a 00 0d 0b 00 |eir Grap|hs......|
|00000130| 20 20 20 20 20 10 35 2d | 33 2d 31 0e 73 35 2d 33 | .5-|3-1.s5-3|
|00000140| 0e 53 65 63 74 69 6f 6e | 20 35 2e 33 0f 20 20 50 |.Section| 5.3. P|
|00000150| 72 6f 70 65 72 74 69 65 | 73 20 6f 66 20 4c 6f 67 |ropertie|s of Log|
|00000160| 61 72 69 74 68 6d 73 0d | 0a 00 0d 0b 00 20 20 20 |arithms.|..... |
|00000170| 20 20 10 35 2d 34 2d 31 | 0e 73 35 2d 34 0e 53 65 | .5-4-1|.s5-4.Se|
|00000180| 63 74 69 6f 6e 20 35 2e | 34 0f 20 20 45 78 70 6f |ction 5.|4. Expo|
|00000190| 6e 65 6e 74 69 61 6c 20 | 61 6e 64 20 4c 6f 67 61 |nential |and Loga|
|000001a0| 72 69 74 68 6d 69 63 20 | 45 71 75 61 74 69 6f 6e |rithmic |Equation|
|000001b0| 73 0d 0a 00 0d 0b 00 20 | 20 20 20 20 10 35 2d 35 |s...... | .5-5|
|000001c0| 2d 31 0e 73 35 2d 35 0e | 53 65 63 74 69 6f 6e 20 |-1.s5-5.|Section |
|000001d0| 35 2e 35 0f 20 20 45 78 | 70 6f 6e 65 6e 74 69 61 |5.5. Ex|ponentia|
|000001e0| 6c 20 61 6e 64 20 4c 6f | 67 61 72 69 74 68 6d 69 |l and Lo|garithmi|
|000001f0| 63 20 4d 6f 64 65 6c 73 | 0d 0a 00 0d 0b 00 20 20 |c Models|...... |
|00000200| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000210| 10 35 2d 70 6f 73 74 0e | 70 6f 73 74 69 6e 74 72 |.5-post.|postintr|
|00000220| 6f 2d 35 0e 43 68 61 70 | 74 65 72 20 50 6f 73 74 |o-5.Chap|ter Post|
|00000230| 2d 74 65 73 74 0f 0d 0a | 00 0d 0b 00 53 65 63 74 |-test...|....Sect|
|00000240| 69 6f 6e 20 35 2e 31 20 | 20 45 78 70 6f 6e 65 6e |ion 5.1 | Exponen|
|00000250| 74 69 61 6c 20 46 75 6e | 63 74 69 6f 6e 73 20 61 |tial Fun|ctions a|
|00000260| 6e 64 20 54 68 65 69 72 | 20 47 72 61 70 68 73 0d |nd Their| Graphs.|
|00000270| 0a 00 46 6f 72 20 6d 6f | 72 65 20 70 72 61 63 74 |..For mo|re pract|
|00000280| 69 63 65 3a 0d 0a 00 0d | 0b 00 20 20 20 20 20 10 |ice:....|.. .|
|00000290| 35 2d 31 2d 33 0e 78 35 | 2d 31 0e 45 78 65 72 63 |5-1-3.x5|-1.Exerc|
|000002a0| 69 73 65 73 0f 0d 0a 00 | 20 20 20 20 20 10 35 2d |ises....| .5-|
|000002b0| 31 2d 32 0e 65 35 2d 31 | 0e 47 75 69 64 65 64 20 |1-2.e5-1|.Guided |
|000002c0| 45 78 65 72 63 69 73 65 | 73 0f 0d 0a 00 0d 0a 00 |Exercise|s.......|
|000002d0| 54 6f 70 69 63 73 20 66 | 6f 72 20 65 78 70 6c 6f |Topics f|or explo|
|000002e0| 72 61 74 69 6f 6e 3a 0d | 0a 00 0d 0b 00 20 20 20 |ration:.|..... |
|000002f0| 20 20 0e 73 35 2d 31 2d | 31 0e 44 65 66 69 6e 69 | .s5-1-|1.Defini|
|00000300| 74 69 6f 6e 20 6f 66 20 | 45 78 70 6f 6e 65 6e 74 |tion of |Exponent|
|00000310| 69 61 6c 20 46 75 6e 63 | 74 69 6f 6e 0f 0d 0a 00 |ial Func|tion....|
|00000320| 20 20 20 20 20 0e 73 35 | 2d 31 2d 32 0e 54 68 65 | .s5|-1-2.The|
|00000330| 20 47 72 61 70 68 20 6f | 66 20 61 6e 20 45 78 70 | Graph o|f an Exp|
|00000340| 6f 6e 65 6e 74 69 61 6c | 20 46 75 6e 63 74 69 6f |onential| Functio|
|00000350| 6e 0f 0d 0a 00 20 20 20 | 20 20 0e 73 35 2d 31 2d |n.... | .s5-1-|
|00000360| 33 0e 54 68 65 20 45 78 | 70 6f 6e 65 6e 74 69 61 |3.The Ex|ponentia|
|00000370| 6c 20 46 75 6e 63 74 69 | 6f 6e 20 6f 6e 20 61 20 |l Functi|on on a |
|00000380| 43 61 6c 63 75 6c 61 74 | 6f 72 0f 0d 0a 00 20 20 |Calculat|or.... |
|00000390| 20 20 20 0e 73 35 2d 31 | 2d 34 0e 54 68 65 20 4e | .s5-1|-4.The N|
|000003a0| 61 74 75 72 61 6c 20 42 | 61 73 65 20 11 33 65 11 |atural B|ase .3e.|
|000003b0| 31 0f 0d 0a 00 20 20 20 | 20 20 0e 73 35 2d 31 2d |1.... | .s5-1-|
|000003c0| 35 0e 45 76 61 6c 75 61 | 74 69 6e 67 20 4e 61 74 |5.Evalua|ting Nat|
|000003d0| 75 72 61 6c 20 45 78 70 | 6f 6e 65 6e 74 69 61 6c |ural Exp|onential|
|000003e0| 20 45 78 70 72 65 73 73 | 69 6f 6e 73 20 6f 6e 20 | Express|ions on |
|000003f0| 61 20 43 61 6c 63 75 6c | 61 74 6f 72 0f 0d 0a 00 |a Calcul|ator....|
|00000400| 20 20 20 20 20 0e 73 35 | 2d 31 2d 36 0e 43 6f 6d | .s5|-1-6.Com|
|00000410| 70 6f 75 6e 64 20 49 6e | 74 65 72 65 73 74 0f 0d |pound In|terest..|
|00000420| 0a 00 53 65 63 74 69 6f | 6e 20 35 2e 31 20 20 45 |..Sectio|n 5.1 E|
|00000430| 78 70 6f 6e 65 6e 74 69 | 61 6c 20 46 75 6e 63 74 |xponenti|al Funct|
|00000440| 69 6f 6e 73 20 61 6e 64 | 20 54 68 65 69 72 20 47 |ions and| Their G|
|00000450| 72 61 70 68 73 0d 0b 00 | 54 77 6f 20 69 6d 70 6f |raphs...|Two impo|
|00000460| 72 74 61 6e 74 20 6e 6f | 6e 61 6c 67 65 62 72 61 |rtant no|nalgebra|
|00000470| 69 63 20 66 75 6e 63 74 | 69 6f 6e 73 20 75 73 65 |ic funct|ions use|
|00000480| 64 20 69 6e 20 6d 61 6e | 79 20 6d 61 74 68 65 6d |d in man|y mathem|
|00000490| 61 74 69 63 61 6c 20 61 | 70 70 6c 69 63 61 74 69 |atical a|pplicati|
|000004a0| 6f 6e 73 0d 0a 00 61 72 | 65 20 74 68 65 20 11 33 |ons...ar|e the .3|
|000004b0| 65 78 70 6f 6e 65 6e 74 | 69 61 6c 20 11 31 61 6e |exponent|ial .1an|
|000004c0| 64 20 11 33 6c 6f 67 61 | 72 69 74 68 6d 69 63 20 |d .3loga|rithmic |
|000004d0| 11 31 66 75 6e 63 74 69 | 6f 6e 73 2e 20 20 54 68 |.1functi|ons. Th|
|000004e0| 65 73 65 20 74 77 6f 20 | 66 75 6e 63 74 69 6f 6e |ese two |function|
|000004f0| 73 20 61 72 65 20 63 61 | 6c 6c 65 64 0d 0a 00 12 |s are ca|lled....|
|00000500| 31 74 72 61 6e 73 63 65 | 6e 64 65 6e 74 61 6c 20 |1transce|ndental |
|00000510| 66 75 6e 63 74 69 6f 6e | 73 12 30 2e 0d 0a 00 0d |function|s.0.....|
|00000520| 0a 00 54 68 65 20 67 65 | 6e 65 72 61 6c 20 64 65 |..The ge|neral de|
|00000530| 66 69 6e 69 74 69 6f 6e | 20 6f 66 20 74 68 65 20 |finition| of the |
|00000540| 12 31 65 78 70 6f 6e 65 | 6e 74 69 61 6c 20 66 75 |.1expone|ntial fu|
|00000550| 6e 63 74 69 6f 6e 20 11 | 33 66 20 11 31 77 69 74 |nction .|3f .1wit|
|00000560| 68 20 62 61 73 65 20 11 | 33 61 11 31 12 30 20 69 |h base .|3a.1.0 i|
|00000570| 73 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |s... | |
|00000580| 20 11 32 78 0d 0b 00 20 | 20 20 20 20 11 33 66 28 | .2x... | .3f(|
|00000590| 78 29 20 3d 20 61 0d 0a | 00 0d 0b 00 11 31 77 68 |x) = a..|.....1wh|
|000005a0| 65 72 65 20 11 33 61 20 | 3e 20 30 2c 20 61 20 11 |ere .3a |> 0, a .|
|000005b0| 34 3d 20 11 33 31 2c 20 | 11 31 61 6e 64 20 11 33 |4= .31, |.1and .3|
|000005c0| 78 20 11 31 69 73 20 61 | 6e 79 20 72 65 61 6c 20 |x .1is a|ny real |
|000005d0| 6e 75 6d 62 65 72 2e 0d | 0a 00 0d 0b 00 20 20 20 |number..|..... |
|000005e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000610| 20 11 32 78 0d 0b 00 11 | 31 57 65 20 65 78 63 6c | .2x....|1We excl|
|00000620| 75 64 65 20 74 68 65 20 | 62 61 73 65 20 11 33 61 |ude the |base .3a|
|00000630| 20 11 31 3d 20 31 20 62 | 65 63 61 75 73 65 20 69 | .1= 1 b|ecause i|
|00000640| 74 20 79 69 65 6c 64 73 | 20 11 33 66 11 31 28 11 |t yields| .3f.1(.|
|00000650| 33 78 11 31 29 20 3d 20 | 31 20 20 3d 20 31 2e 20 |3x.1) = |1 = 1. |
|00000660| 20 54 68 69 73 20 69 73 | 20 61 20 63 6f 6e 73 74 | This is| a const|
|00000670| 61 6e 74 0d 0a 00 66 75 | 6e 63 74 69 6f 6e 2c 20 |ant...fu|nction, |
|00000680| 6e 6f 74 20 61 6e 20 65 | 78 70 6f 6e 65 6e 74 69 |not an e|xponenti|
|00000690| 61 6c 20 66 75 6e 63 74 | 69 6f 6e 2e 0d 0a 00 0d |al funct|ion.....|
|000006a0| 0a 00 57 65 20 68 61 76 | 65 20 61 6c 72 65 61 64 |..We hav|e alread|
|000006b0| 79 20 73 74 75 64 69 65 | 64 20 74 68 65 20 70 72 |y studie|d the pr|
|000006c0| 6f 70 65 72 74 69 65 73 | 20 6f 66 20 65 78 70 6f |operties| of expo|
|000006d0| 6e 65 6e 74 73 20 61 6e | 64 20 74 68 65 79 20 61 |nents an|d they a|
|000006e0| 70 70 6c 79 20 65 71 75 | 61 6c 6c 79 20 0d 0a 00 |pply equ|ally ...|
|000006f0| 77 65 6c 6c 20 74 6f 20 | 65 78 70 6f 6e 65 6e 74 |well to |exponent|
|00000700| 69 61 6c 20 66 75 6e 63 | 74 69 6f 6e 73 2e 0d 0a |ial func|tions...|
|00000710| 00 53 65 63 74 69 6f 6e | 20 35 2e 31 20 20 45 78 |.Section| 5.1 Ex|
|00000720| 70 6f 6e 65 6e 74 69 61 | 6c 20 46 75 6e 63 74 69 |ponentia|l Functi|
|00000730| 6f 6e 73 20 61 6e 64 20 | 54 68 65 69 72 20 47 72 |ons and |Their Gr|
|00000740| 61 70 68 73 20 20 20 20 | 12 31 54 68 65 20 47 72 |aphs |.1The Gr|
|00000750| 61 70 68 20 6f 66 20 61 | 6e 20 45 78 70 6f 6e 65 |aph of a|n Expone|
|00000760| 6e 74 69 61 6c 20 46 75 | 6e 63 74 69 6f 6e 12 30 |ntial Fu|nction.0|
|00000770| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000780| 20 11 32 78 0d 0b 00 11 | 31 47 72 61 70 68 20 6f | .2x....|1Graph o|
|00000790| 66 20 11 33 79 20 3d 20 | 61 20 2c 20 61 20 3e 20 |f .3y = |a , a > |
|000007a0| 31 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |1 | |
|000007b0| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 14 74 2d | | .1.t-|
|000007c0| 36 2d 31 2d 31 2e 68 69 | 14 35 30 14 31 14 32 32 |6-1-1.hi|.50.1.22|
|000007d0| 14 39 14 0d 0a 00 20 20 | 20 11 34 2e 20 11 31 44 |.9.... | .4. .1D|
|000007e0| 6f 6d 61 69 6e 3a 20 28 | 2d 11 34 38 11 31 2c 20 |omain: (|-.48.1, |
|000007f0| 11 34 38 11 31 29 0d 0a | 00 20 20 20 11 34 2e 20 |.48.1)..|. .4. |
|00000800| 11 31 52 61 6e 67 65 3a | 20 28 30 2c 20 11 34 38 |.1Range:| (0, .48|
|00000810| 11 31 29 0d 0a 00 20 20 | 20 11 34 2e 20 11 31 49 |.1)... | .4. .1I|
|00000820| 6e 74 65 72 63 65 70 74 | 3a 20 28 30 2c 20 31 29 |ntercept|: (0, 1)|
|00000830| 0d 0a 00 20 20 20 11 34 | 2e 20 11 31 49 6e 63 72 |... .4|. .1Incr|
|00000840| 65 61 73 69 6e 67 0d 0a | 00 20 20 20 11 34 2e 20 |easing..|. .4. |
|00000850| 11 31 43 6f 6e 74 69 6e | 75 6f 75 73 0d 0a 00 20 |.1Contin|uous... |
|00000860| 20 20 11 34 2e 20 11 33 | 78 11 31 2d 61 78 69 73 | .4. .3|x.1-axis|
|00000870| 20 69 73 20 61 20 68 6f | 72 69 7a 6f 6e 74 61 6c | is a ho|rizontal|
|00000880| 20 61 73 79 6d 70 74 6f | 74 65 0d 0a 00 20 20 20 | asympto|te... |
|00000890| 20 20 20 20 11 32 78 0d | 0b 00 20 20 20 20 20 11 | .2x.|.. .|
|000008a0| 31 28 11 33 61 20 20 11 | 34 32 33 20 11 31 30 20 |1(.3a .|423 .10 |
|000008b0| 61 73 20 11 33 78 20 11 | 34 32 33 20 11 31 2d 11 |as .3x .|423 .1-.|
|000008c0| 34 38 11 31 29 0d 0a 00 | 20 20 20 20 20 20 20 20 |48.1)...| |
|000008d0| 20 20 20 20 20 20 11 32 | 2d 78 0d 0b 00 11 31 47 | .2|-x....1G|
|000008e0| 72 61 70 68 20 6f 66 20 | 11 33 79 20 3d 20 61 20 |raph of |.3y = a |
|000008f0| 20 2c 20 61 20 3e 20 31 | 20 20 20 20 20 20 20 20 | , a > 1| |
|00000900| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000910| 20 20 11 31 14 74 2d 36 | 2d 31 2d 32 2e 68 69 14 | .1.t-6|-1-2.hi.|
|00000920| 35 30 14 32 31 14 32 32 | 14 39 14 0d 0a 00 20 20 |50.21.22|.9.... |
|00000930| 20 11 34 2e 20 11 31 44 | 6f 6d 61 69 6e 3a 20 28 | .4. .1D|omain: (|
|00000940| 2d 11 34 38 11 31 2c 20 | 11 34 38 11 31 29 0d 0a |-.48.1, |.48.1)..|
|00000950| 00 20 20 20 11 34 2e 20 | 11 31 52 61 6e 67 65 3a |. .4. |.1Range:|
|00000960| 20 28 30 2c 20 11 34 38 | 11 31 29 0d 0a 00 20 20 | (0, .48|.1)... |
|00000970| 20 11 34 2e 20 11 31 49 | 6e 74 65 72 63 65 70 74 | .4. .1I|ntercept|
|00000980| 3a 20 28 30 2c 20 31 29 | 0d 0a 00 20 20 20 11 34 |: (0, 1)|... .4|
|00000990| 2e 20 11 31 44 65 63 72 | 65 61 73 69 6e 67 0d 0a |. .1Decr|easing..|
|000009a0| 00 20 20 20 11 34 2e 20 | 11 31 43 6f 6e 74 69 6e |. .4. |.1Contin|
|000009b0| 75 6f 75 73 0d 0a 00 20 | 20 20 11 34 2e 20 11 33 |uous... | .4. .3|
|000009c0| 78 11 31 2d 61 78 69 73 | 20 69 73 20 61 20 68 6f |x.1-axis| is a ho|
|000009d0| 72 69 7a 6f 6e 74 61 6c | 20 61 73 79 6d 70 74 6f |rizontal| asympto|
|000009e0| 74 65 0d 0a 00 20 20 20 | 20 20 20 20 20 20 11 32 |te... | .2|
|000009f0| 2d 78 0d 0b 00 20 20 20 | 20 20 20 20 11 31 28 11 |-x... | .1(.|
|00000a00| 33 61 20 20 20 11 34 32 | 33 20 11 31 30 20 61 73 |3a .42|3 .10 as|
|00000a10| 20 11 33 78 20 11 34 32 | 33 20 38 11 31 29 0d 0a | .3x .42|3 8.1)..|
|00000a20| 00 53 65 63 74 69 6f 6e | 20 35 2e 31 20 20 45 78 |.Section| 5.1 Ex|
|00000a30| 70 6f 6e 65 6e 74 69 61 | 6c 20 46 75 6e 63 74 69 |ponentia|l Functi|
|00000a40| 6f 6e 73 20 61 6e 64 20 | 54 68 65 69 72 20 47 72 |ons and |Their Gr|
|00000a50| 61 70 68 73 54 6f 20 12 | 31 65 76 61 6c 75 61 74 |aphsTo .|1evaluat|
|00000a60| 65 20 61 6e 20 65 78 70 | 6f 6e 65 6e 74 69 61 6c |e an exp|onential|
|00000a70| 20 65 78 70 72 65 73 73 | 69 6f 6e 20 6f 6e 20 61 | express|ion on a|
|00000a80| 20 63 61 6c 63 75 6c 61 | 74 6f 72 12 30 2c 20 77 | calcula|tor.0, w|
|00000a90| 65 20 75 73 65 20 74 68 | 65 20 66 6f 6c 6c 6f 77 |e use th|e follow|
|00000aa0| 69 6e 67 0d 0a 00 6b 65 | 79 73 74 72 6f 6b 65 73 |ing...ke|ystrokes|
|00000ab0| 2e 0d 0a 00 0d 0b 00 47 | 72 61 70 68 69 6e 67 20 |.......G|raphing |
|00000ac0| 43 61 6c 63 75 6c 61 74 | 6f 72 3a 0d 0a 00 0d 0b |Calculat|or:.....|
|00000ad0| 00 20 11 33 4e 75 6d 62 | 65 72 20 20 20 20 20 20 |. .3Numb|er |
|00000ae0| 20 4b 65 79 73 74 72 6f | 6b 65 73 20 20 20 20 20 | Keystro|kes |
|00000af0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b10| 20 20 44 69 73 70 6c 61 | 79 0d 0b 00 20 11 34 32 | Displa|y... .42|
|00000b20| 32 32 32 32 32 32 20 20 | 20 20 20 20 32 32 32 32 |222222 | 2222|
|00000b30| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000b40| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000b50| 32 32 32 32 32 32 20 20 | 20 20 20 20 20 32 32 32 |222222 | 222|
|00000b60| 32 32 32 32 32 32 32 32 | 32 0d 0a 00 0d 0b 00 20 |22222222|2...... |
|00000b70| 20 20 20 11 32 33 20 20 | 20 20 20 20 20 20 20 20 | .23 | |
|00000b80| 20 20 20 11 34 5b 32 32 | 32 5d 20 20 20 5b 32 32 | .4[22|2] [22|
|00000b90| 32 32 32 5d 0d 0b 00 20 | 20 20 11 31 32 20 20 20 |222]... | .12 |
|00000ba0| 20 20 20 20 20 20 20 20 | 20 32 20 11 34 21 20 11 | | 2 .4! .|
|00000bb0| 31 5e 20 11 34 21 20 11 | 31 33 20 11 34 21 11 32 |1^ .4! .|13 .4!.2|
|00000bc0| 45 4e 54 45 52 11 34 21 | 20 20 20 20 20 20 20 20 |ENTER.4!| |
|00000bd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000be0| 20 20 20 20 20 20 20 20 | 11 31 38 0d 0b 00 20 20 | |.18... |
|00000bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c00| 11 34 6c 32 32 32 6a 20 | 20 20 6c 32 32 32 32 32 |.4l222j | l22222|
|00000c10| 6a 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 11 32 |j...... | .2|
|00000c20| 35 2f 33 20 20 20 20 20 | 20 20 20 20 20 20 11 34 |5/3 | .4|
|00000c30| 5b 32 32 32 5d 20 5b 32 | 32 32 5d 20 20 20 5b 32 |[222] [2|22] [2|
|00000c40| 32 32 5d 20 20 20 5b 32 | 32 32 5d 20 5b 32 32 32 |22] [2|22] [222|
|00000c50| 32 32 5d 0d 0b 00 20 20 | 20 11 31 35 2e 30 37 20 |22]... | .15.07 |
|00000c60| 20 20 20 20 20 20 20 20 | 35 2e 30 37 20 11 34 21 | |5.07 .4!|
|00000c70| 20 11 31 5e 20 11 34 21 | 20 21 20 11 32 28 20 11 | .1^ .4!| ! .2( .|
|00000c80| 34 21 20 11 31 35 20 11 | 34 21 20 3a 20 21 20 11 |4! .15 .|4! : ! .|
|00000c90| 31 33 20 11 34 21 20 11 | 32 29 20 11 34 21 20 21 |13 .4! .|2) .4! !|
|00000ca0| 11 32 45 4e 54 45 52 11 | 34 21 20 20 20 20 20 20 |.2ENTER.|4! |
|00000cb0| 20 20 11 31 31 34 2e 39 | 36 32 38 31 33 35 39 0d | .114.9|6281359.|
|00000cc0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000cd0| 20 20 20 20 20 20 20 11 | 34 6c 32 32 32 6a 20 6c | .|4l222j l|
|00000ce0| 32 32 32 6a 20 20 20 6c | 32 32 32 6a 20 20 20 6c |222j l|222j l|
|00000cf0| 32 32 32 6a 20 6c 32 32 | 32 32 32 6a 20 20 20 20 |222j l22|222j |
|00000d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d30| 20 11 31 2e 0d 0a 00 53 | 65 63 74 69 6f 6e 20 35 | .1....S|ection 5|
|00000d40| 2e 31 20 20 45 78 70 6f | 6e 65 6e 74 69 61 6c 20 |.1 Expo|nential |
|00000d50| 46 75 6e 63 74 69 6f 6e | 73 20 61 6e 64 20 54 68 |Function|s and Th|
|00000d60| 65 69 72 20 47 72 61 70 | 68 73 0d 0b 00 49 6e 20 |eir Grap|hs...In |
|00000d70| 61 70 70 6c 69 63 61 74 | 69 6f 6e 73 20 61 6e 64 |applicat|ions and|
|00000d80| 20 69 6e 20 63 61 6c 63 | 75 6c 75 73 2c 20 77 65 | in calc|ulus, we|
|00000d90| 20 6f 66 74 65 6e 20 75 | 73 65 20 74 68 65 20 69 | often u|se the i|
|00000da0| 72 72 61 74 69 6f 6e 61 | 6c 20 6e 75 6d 62 65 72 |rrationa|l number|
|00000db0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 11 33 65 20 11 |...... | .3e .|
|00000dc0| 34 7e 20 11 31 32 2e 37 | 31 38 32 38 2e 2e 2e 0d |4~ .12.7|1828....|
|00000dd0| 0a 00 0d 0b 00 63 61 6c | 6c 65 64 20 74 68 65 20 |.....cal|led the |
|00000de0| 12 31 6e 61 74 75 72 61 | 6c 20 62 61 73 65 12 30 |.1natura|l base.0|
|00000df0| 2e 20 20 54 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |. The f|unction |
|00000e00| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000e10| 11 32 78 0d 0b 00 20 20 | 20 20 20 11 33 66 28 78 |.2x... | .3f(x|
|00000e20| 29 20 3d 20 65 0d 0a 00 | 0d 0b 00 11 31 69 73 20 |) = e...|....1is |
|00000e30| 63 61 6c 6c 65 64 20 74 | 68 65 20 12 31 6e 61 74 |called t|he .1nat|
|00000e40| 75 72 61 6c 20 65 78 70 | 6f 6e 65 6e 74 69 61 6c |ural exp|onential|
|00000e50| 20 66 75 6e 63 74 69 6f | 6e 12 30 2e 0d 0a 00 0d | functio|n.0.....|
|00000e60| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000e70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e90| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 78 0d | | .2x.|
|00000ea0| 0b 00 11 31 42 65 20 73 | 75 72 65 20 79 6f 75 20 |...1Be s|ure you |
|00000eb0| 73 65 65 20 74 68 61 74 | 20 66 6f 72 20 74 68 65 |see that| for the|
|00000ec0| 20 65 78 70 6f 6e 65 6e | 74 69 61 6c 20 66 75 6e | exponen|tial fun|
|00000ed0| 63 74 69 6f 6e 20 11 33 | 66 11 31 28 11 33 78 11 |ction .3|f.1(.3x.|
|00000ee0| 31 29 20 3d 20 11 33 65 | 20 11 31 2c 20 11 33 65 |1) = .3e| .1, .3e|
|00000ef0| 20 11 31 69 73 20 74 68 | 65 0d 0a 00 0d 0b 00 63 | .1is th|e......c|
|00000f00| 6f 6e 73 74 61 6e 74 20 | 32 2e 37 31 38 32 38 2e |onstant |2.71828.|
|00000f10| 2e 2e 2c 20 77 68 65 72 | 65 61 73 20 11 33 78 20 |.., wher|eas .3x |
|00000f20| 11 31 69 73 20 74 68 65 | 20 76 61 72 69 61 62 6c |.1is the| variabl|
|00000f30| 65 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 35 2e 31 |e....Sec|tion 5.1|
|00000f40| 20 20 45 78 70 6f 6e 65 | 6e 74 69 61 6c 20 46 75 | Expone|ntial Fu|
|00000f50| 6e 63 74 69 6f 6e 73 20 | 61 6e 64 20 54 68 65 69 |nctions |and Thei|
|00000f60| 72 20 47 72 61 70 68 73 | 54 6f 20 12 31 65 76 61 |r Graphs|To .1eva|
|00000f70| 6c 75 61 74 65 20 61 20 | 6e 61 74 75 72 61 6c 20 |luate a |natural |
|00000f80| 65 78 70 6f 6e 65 6e 74 | 69 61 6c 20 65 78 70 72 |exponent|ial expr|
|00000f90| 65 73 73 69 6f 6e 20 6f | 6e 20 61 20 63 61 6c 63 |ession o|n a calc|
|00000fa0| 75 6c 61 74 6f 72 12 30 | 2c 20 77 65 20 75 73 65 |ulator.0|, we use|
|00000fb0| 20 74 68 65 0d 0a 00 66 | 6f 6c 6c 6f 77 69 6e 67 | the...f|ollowing|
|00000fc0| 20 6b 65 79 73 74 72 6f | 6b 65 73 2e 0d 0a 00 0d | keystro|kes.....|
|00000fd0| 0b 00 47 72 61 70 68 69 | 6e 67 20 43 61 6c 63 75 |..Graphi|ng Calcu|
|00000fe0| 6c 61 74 6f 72 3a 0d 0a | 00 0d 0b 00 20 11 33 4e |lator:..|.... .3N|
|00000ff0| 75 6d 62 65 72 20 20 20 | 20 20 20 20 4b 65 79 73 |umber | Keys|
|00001000| 74 72 6f 6b 65 73 20 20 | 20 20 20 20 20 20 20 20 |trokes | |
|00001010| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001020| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 44 69 73 | | Dis|
|00001030| 70 6c 61 79 0d 0b 00 20 | 11 34 32 32 32 32 32 32 |play... |.4222222|
|00001040| 32 20 20 20 20 20 20 32 | 32 32 32 32 32 32 32 32 |2 2|22222222|
|00001050| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001060| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001070| 32 20 20 20 20 20 20 20 | 32 32 32 32 32 32 32 32 |2 |22222222|
|00001080| 32 32 32 32 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |2222... | |
|00001090| 20 20 20 20 20 20 20 5b | 32 32 5d 0d 0b 00 20 20 | [|22]... |
|000010a0| 20 20 11 32 33 20 20 20 | 20 20 20 20 20 20 20 20 | .23 | |
|000010b0| 11 34 21 20 11 32 78 11 | 34 21 0d 0b 00 20 20 20 |.4! .2x.|4!... |
|000010c0| 11 33 65 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |.3e | .|
|000010d0| 34 21 11 33 65 20 11 34 | 21 20 11 31 33 20 20 20 |4!.3e .4|! .13 |
|000010e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001100| 20 20 20 20 20 20 32 30 | 2e 30 38 35 35 33 36 39 | 20|.0855369|
|00001110| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00001120| 20 20 20 20 11 34 6c 32 | 32 6a 0d 0a 00 20 20 20 | .4l2|2j... |
|00001130| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 5b 32 32 | | [22|
|00001140| 5d 0d 0b 00 20 20 20 20 | 11 31 2d 11 32 35 2f 33 |]... |.1-.25/3|
|00001150| 20 20 20 20 20 20 20 20 | 11 34 21 20 11 32 78 11 | |.4! .2x.|
|00001160| 34 21 20 5b 32 32 32 5d | 20 5b 32 32 32 5d 20 20 |4! [222]| [222] |
|00001170| 20 5b 32 32 32 5d 20 20 | 20 5b 32 32 32 5d 20 5b | [222] | [222] [|
|00001180| 32 32 32 32 32 5d 0d 0b | 00 20 20 20 11 33 65 20 |22222]..|. .3e |
|00001190| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 21 11 33 | | .4!.3|
|000011a0| 65 20 11 34 21 20 21 20 | 11 32 28 20 11 34 21 20 |e .4! ! |.2( .4! |
|000011b0| 21 11 32 28 11 31 2d 11 | 32 29 11 34 21 20 11 31 |!.2(.1-.|2).4! .1|
|000011c0| 35 20 11 34 21 20 3a 20 | 21 20 11 31 33 20 11 34 |5 .4! : |! .13 .4|
|000011d0| 21 20 11 32 29 20 11 34 | 21 20 21 11 32 45 4e 54 |! .2) .4|! !.2ENT|
|000011e0| 45 52 11 34 21 20 20 20 | 20 20 20 20 20 11 31 30 |ER.4! | .10|
|000011f0| 2e 31 38 38 38 37 35 36 | 30 32 38 0d 0b 00 20 20 |.1888756|028... |
|00001200| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|00001210| 6c 32 32 6a 20 6c 32 32 | 32 6a 20 6c 32 32 32 6a |l22j l22|2j l222j|
|00001220| 20 20 20 6c 32 32 32 6a | 20 20 20 6c 32 32 32 6a | l222j| l222j|
|00001230| 20 6c 32 32 32 32 32 6a | 20 20 20 20 20 20 20 20 | l22222j| |
|00001240| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001250| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 2e 0d | | .1..|
|00001260| 0a 00 53 65 63 74 69 6f | 6e 20 35 2e 31 20 20 45 |..Sectio|n 5.1 E|
|00001270| 78 70 6f 6e 65 6e 74 69 | 61 6c 20 46 75 6e 63 74 |xponenti|al Funct|
|00001280| 69 6f 6e 73 20 61 6e 64 | 20 54 68 65 69 72 20 47 |ions and| Their G|
|00001290| 72 61 70 68 73 0d 0b 00 | 41 20 63 6f 6d 6d 6f 6e |raphs...|A common|
|000012a0| 20 61 70 70 6c 69 63 61 | 74 69 6f 6e 20 6f 66 20 | applica|tion of |
|000012b0| 65 78 70 6f 6e 65 6e 74 | 69 61 6c 20 66 75 6e 63 |exponent|ial func|
|000012c0| 74 69 6f 6e 73 20 69 73 | 20 63 61 6c 63 75 6c 61 |tions is| calcula|
|000012d0| 74 69 6e 67 20 12 31 63 | 6f 6d 70 6f 75 6e 64 20 |ting .1c|ompound |
|000012e0| 0d 0a 00 69 6e 74 65 72 | 65 73 74 12 30 2e 20 20 |...inter|est.0. |
|000012f0| 41 66 74 65 72 20 11 33 | 74 20 11 31 79 65 61 72 |After .3|t .1year|
|00001300| 73 2c 20 74 68 65 20 62 | 61 6c 61 6e 63 65 20 11 |s, the b|alance .|
|00001310| 33 41 20 11 31 69 6e 20 | 61 6e 20 61 63 63 6f 75 |3A .1in |an accou|
|00001320| 6e 74 20 77 69 74 68 20 | 70 72 69 6e 63 69 70 61 |nt with |principa|
|00001330| 6c 20 11 33 50 20 11 31 | 61 6e 64 20 0d 0a 00 61 |l .3P .1|and ...a|
|00001340| 6e 6e 75 61 6c 20 70 65 | 72 63 65 6e 74 61 67 65 |nnual pe|rcentage|
|00001350| 20 72 61 74 65 20 11 33 | 72 20 11 31 28 65 78 70 | rate .3|r .1(exp|
|00001360| 72 65 73 73 65 64 20 61 | 73 20 61 20 64 65 63 69 |ressed a|s a deci|
|00001370| 6d 61 6c 29 20 69 73 20 | 67 69 76 65 6e 20 62 79 |mal) is |given by|
|00001380| 20 74 68 65 20 66 6f 6c | 6c 6f 77 69 6e 67 20 0d | the fol|lowing .|
|00001390| 0a 00 66 6f 72 6d 75 6c | 61 73 2e 0d 0a 00 20 20 |..formul|as.... |
|000013a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013c0| 20 20 20 20 11 34 28 20 | 20 20 20 20 29 11 32 6e | .4( | ).2n|
|000013d0| 74 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |t... | |
|000013e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013f0| 20 20 20 20 20 20 20 20 | 20 20 11 34 21 20 20 20 | | .4! |
|00001400| 20 11 33 72 11 34 21 0d | 0b 00 11 31 31 2e 20 20 | .3r.4!.|...11. |
|00001410| 46 6f 72 20 11 33 6e 20 | 11 31 63 6f 6d 70 6f 75 |For .3n |.1compou|
|00001420| 6e 64 69 6e 67 73 20 70 | 65 72 20 79 65 61 72 3a |ndings p|er year:|
|00001430| 20 11 33 41 20 3d 20 50 | 11 34 21 11 33 31 20 2b | .3A = P|.4!.31 +|
|00001440| 20 11 34 32 21 0d 0b 00 | 20 20 20 20 20 20 20 20 | .42!...| |
|00001450| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001460| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 20 | | ! |
|00001470| 20 20 20 11 33 6e 11 34 | 21 0d 0b 00 20 20 20 20 | .3n.4|!... |
|00001480| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001490| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014a0| 20 20 39 20 20 20 20 20 | 30 0d 0a 00 20 20 20 20 | 9 |0... |
|000014b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014d0| 20 20 11 32 72 74 0d 0b | 00 11 31 32 2e 20 20 46 | .2rt..|..12. F|
|000014e0| 6f 72 20 63 6f 6e 74 69 | 6e 75 6f 75 73 20 63 6f |or conti|nuous co|
|000014f0| 6d 70 6f 75 6e 64 69 6e | 67 3a 20 11 33 41 20 3d |mpoundin|g: .3A =|
|00001500| 20 50 65 0d 0a 00 40 00 | 00 00 fc 01 00 00 4d 30 | Pe...@.|......M0|
|00001510| 00 00 10 00 00 00 00 00 | 00 00 63 68 61 70 35 00 |........|..chap5.|
|00001520| 6f 02 00 00 b3 01 00 00 | 4d 33 00 00 3c 02 00 00 |o.......|M3..<...|
|00001530| 00 00 00 00 73 35 2d 31 | 00 55 04 00 00 bc 02 00 |....s5-1|.U......|
|00001540| 00 4d 33 00 00 22 04 00 | 00 00 00 00 00 73 35 2d |.M3.."..|.....s5-|
|00001550| 31 2d 31 00 44 07 00 00 | dd 02 00 00 4d 33 00 00 |1-1.D...|....M3..|
|00001560| 11 07 00 00 00 00 00 00 | 73 35 2d 31 2d 32 00 54 |........|s5-1-2.T|
|00001570| 0a 00 00 e3 02 00 00 4d | 33 00 00 21 0a 00 00 00 |.......M|3..!....|
|00001580| 00 00 00 73 35 2d 31 2d | 33 00 6a 0d 00 00 cb 01 |...s5-1-|3.j.....|
|00001590| 00 00 4d 33 00 00 37 0d | 00 00 00 00 00 00 73 35 |..M3..7.|......s5|
|000015a0| 2d 31 2d 34 00 68 0f 00 | 00 fa 02 00 00 4d 33 00 |-1-4.h..|.....M3.|
|000015b0| 00 35 0f 00 00 00 00 00 | 00 73 35 2d 31 2d 35 00 |.5......|.s5-1-5.|
|000015c0| 95 12 00 00 71 02 00 00 | 4d 33 00 00 62 12 00 00 |....q...|M3..b...|
|000015d0| 00 00 00 00 73 35 2d 31 | 2d 36 00 |....s5-1|-6. |
+--------+-------------------------+-------------------------+--------+--------+